Digitized by the Internet Archive in Mon with funding from University of California Libraries

```
MATH.
```


STAT.

```
MBeA
```


THE ADVANCED PART

OF A TREATISE ON THE

DYNAMICS OF A SYSTEM OF RIGID BODIES

BEING PART II. OF A TREATISE ON THE WHOLE SUBJECT.

THE ADVANCED PART

OF A TREATISE ON THE

DYNAMICS OF A SYSTEM OF RIGID BODIES.

BEING PART II, OF A TREATISE ON THE WHOLE SUBJECT.

Tefty numeroxs fexamples.

BY
EDWARD JOHN ROUTH, D.Sc., LL.D., F.R.S., \&c. FELLOW OF THE UNIVERSITY OF LONDON; honorary fellow of st peter's college, cambridge.

```
FOURTH EDITION, REVISED AND ENLARGED.
```

7 3 onron:
MACMILLAN AND CO.
1884

Cambrioge:
PRINTED BY C. J. CLAY, M.A. AND SON, at the university press.

QA 861 RT 1884 MATH/ STAT

PREFACE.

This volume is intended to be a continuation of that already published as Part I. in 1882. The time occupied in its preparation has been longer than I had anticipated. This is partly due to the want of sufficient leisure, and partly also because as I proceeded with the work new questions to which no sufficient answers had yet been given seemed continually to arise. The pleasure and labour of attempting to answer these, however imperfectly, has delayed the book.

Although a large portion of this volume has already appeared in the latter half of the third edition, yet much of this has been recast and new illustrations and explanations have been given wherever they appeared to be necessary. Besides this much new matter has been added. Exactly also as in the last edition those parts to which the student should first turn his attention are printed in a larger type than the rest.

Following the same plan as in Vol. I., the several Chapters have been made as independent as possible. The object in view was that the reader should select his own order of study. Historical notices and references have been given throughout the book. But it has not been thought necessary to refer to the author's own additions to the subject, except when they have been first published elsewhere.

In this volume much use has been made of the new symbol for a fraction lately introduced by Prof. Stokes. The symbol

[^0]a / b for $\frac{a}{b}$ is very convenient as it enables the algebraical formulæ to be written on a line with the type. If some such abbreviation as this is not used two whole lines are required to write the simplest fraction. When the numerator or denominator of the fraction so written contains several factors, the rule adopted has been that all that follows the slant line up to the next plus or minus sign is to be regarded as the denominator. In the same way all that precedes the slant line up to the next plus or minus sign is to be taken as the numerator. When more complicated factors have to be written, brackets are used to indicate the numerator and denominator. Thus $\frac{a b}{c d}+\frac{e+f}{g-h}$ would be written
$$
a b / c d+(e+f) /(g-h) .
$$

Numerous examples have been given throughout the book. Some of these are intended to be merely simple exercises, but many are important as illustrating and completing the theories given in the text. Sometimes when the principles of a theory had been explained numerous applications seemed to arise. Instead of loading the text with these it appeared preferable to put them into the form of examples and to give such hints as would make their solution easy. Everywhere the results have been given, and care has been taken to secure their accuracy; but amongst so many problems, it cannot be expected that no errors have escaped detection.

EDWARD J. ROUTH.

CONTENTS.

CHAPTER I.

MOVING AXES AND RELATIVE MOTION.

CHAPTER II.

OSCILLATIONS ABOUT EQUILIBRIUM.
47-56. Lagrange's method with indeterminate multipliers . . 31-36
57-71. Theorems on Lagrange's determinant 36-41
72-75. Energy of an oscillating system 41-43
76-79. Effect of changes in the system 43-45
80-94. Composition and analysis of oscillations 45-51

CHAPTER III.

OSCILLATIONS ABOUT A STATE OF MOTION.
95-102. The energy test of stability 52-57
103-109. Examples of oscillations about steady motion. The Governor and Laplace's Three Particles, \&c.

57-62
110-128. Theory of oscillations about steady motion 62-69
129-140. The representative Point 69-73

CHAPTER IV.

motion of a body under the action of no forces.

ABTS. pages
141-143. Solution of Euler's Equations 74-77
144-156. Poinsot's and MacCullagh's constructions for the motion 77-86
157-175. On the cones described by the invariable and instantaneous axes; treated by Spherical Trigonometry 86-95
176-179. Motion of the Principal Axes $95-98$
180-183. Two principal moments equal 98-99
184-191. Motion when $G^{2}=B T$. 99-104
192-198. Correlated and contrarelated bodies 104-108
199. The Sphero-conic or Spherical Ellipse 108-109
Examples 109-110
CHAPTER V.
MOTION OF A BODY UNDER ANY FORCES.
200-214. Motion of a Top 111-122
215-239. Motion of a sphere on various smooth or rough surfaces. Billiard balls 123-138
240-253. Motion of a solid body on a smooth or rough plane 138-150
254-255. Motion of a rod 150-151
Examples 151-153
CHAPTER VI,
Nature of the motion given by linear equations and theCONDITIONS OF STABILITY.
256-285. Solution of differential equations with single, double, triple, \&c., types. The conditions that all powers of the time are absent 154-166
286-307. The conditions of stability, (1) for a biquadratic, and (2) for an equation of the nth degree 166-176
CHAPTER VII.
FREE AND FORCED OSCILLATIONS.
308-322. On Free Oscillations, with two propositions to determinetheir nature177-184
323-354. On Forced Oscillations; how magnified or diminished, with Herschel's theorem on their period, \&c. 184-195
355-364. Second approximations 195-201

CHAPTER VIII.

CHAPTER IX.

applications of the calculus of pinite differences.

401-419. The Solution of Problems illustrating the two kinds of
motion
420-421. Network of Particles .
422-441. Theory of equations of differences, with Sturm's theorems.

OHAPTER X.

APPLICATIONS OF THE CALCULUS OF VARIATIONS.
442-462. Principles of Least Action and Varying Action . . . 244-254
463-476. Hamilton's solution of the general equations of motion with
Jacobi's complete integral
254-262
477-480. Variation of the elements 262-264

CHAPTER XI.

PRECESSION AND NUTATION.
481-488. On the Potential 265-272
489-504. Motion of the Earth about its centre of gravity . . . 272-286
505-514. Motion of the Moon about its centre of gravity . . . 286-294

CHAPTER XII.

MOTION OF A string or chain.
515-521. Equations of Motion 295-299
522-525. On steady motion 299-302
526-535. On initial motions 302-307
536-547. Small oscillations of a loose chain 307-316
548-558. Small oscillations of a tight string 316-324

CHAPTER XIII.

motion of a membrane.

559-567. Transverse oscillations of a homogeneous membrane . . 325-329
568-584. Motion of a heterogeneous membrane 330-335

[^0]: R. D. II.

